
Visualization Development Environments 2000 Proceedings

1

Integration of C++ digital processing libraries and VTK through Tcl/Tk
dynamic loadable extensions

Javier Suárez-Quirós, Daniel Gayo-Avello, Juán David González-Cobas, Rafael Pedro García-Díaz,
Pedro Ignacio Álvarez-Peñín

Area of Graphic Expression in Engineering – GIworks (University of Oviedo)1

1 E.T.S.I.I.I.I.G., Campus de Viesques, s/n. Gijón – Asturias (SPAIN), quiros@etsiig.uniovi.es, uov02539@correo.uniovi.es, {cobas,
pgarcia, pialvarez}@etsiig.uniovi.es

Abstract

After years of experience in computer graphics projects,
GIworks workgroup at University of Oviedo came to the
conclusion that some multipurpose graphics tools were an
absolute necessity to perform rapid development on
computer graphics. Such tools should provide basic
facilities and should be easily adaptable to the kind of
application on development to avoid starting from scratch
every time a computer graphics project begins, allowing
developers to concentrate on their project specific
characteristics.

In an initial stage this tools would only consist on a
multiplatform 2D and 3D visualization environment –which
would provide methods to load and manage images and
geometry– and an advanced digital image processing
library –independent of but integrated into the environment
like a plug-in–. This work methodology would be applied to
whatever was developed in the future so this new code
could be loaded in a transparent way and could modify the
main tool so that the final look and feel for the user was a
closed and coherent application.

1. Introduction

Nowadays the demand on computer graphics is huge in
so different areas as engineering, biochemistry, medicine or
geography, to talk only about a few. The reasons for such
demand are multiple although we can focus in following
ones:

• Almost immediate access to big data volumes with
minimum effort.

• Easiness to extract initially hidden or deteriorated
information.

• New ways on information management are offered.

Because of this many computer graphics projects are
started; projects that, in great measure, repeat following
circumstances:

1. Each project is different and requires a different and,
many times, completely new conception.

2. All the projects share a very wide, and independent
from the final goal, common base.

3. Most of the effort is invested in re-implement this
common base, wasting previous work and affecting to
the project specific development.

Keeping in mind all the above-mentioned, two
suppositions can settle down:

• The only justifiable effort in a new computer graphics
project is the necessary one for the development of that
part that differentiates it from others.

• Loading of images and/or geometry, manipulation and
later visualization are basic tasks, common to all the
graphic applications and, therefore, widely reusable.

Starting on this suppositions, a toolkit providing all basic
utilities for graphic treatment is needed; this toolkit should
allow rapid applications development, allowing to the
future user to be focused in his particular field without
worrying about simple graphics management tasks. The
multiplatform 2D and 3D visualization environment
described in this paper is such a toolkit.

3. Goals

The visualization environment was planned as one only
tool with two well differentiated work spaces: one for two-

VDE 2000, Princeton, New Jersey, April 27-28, 2000

2

dimensional information manipulation (images) and
another for three-dimensional information (geometry).

The first of this spaces, 2D manipulation, should provide
methods to load, save and show images with different file
formats; as well as the possibility to carry out conversions
between formats and some minimum operations for image
management.

The second one, 3D manipulation, would be similar to
the previous one; offering ways to load, save and visualize
geometry, tools to manipulate this geometry, as well as the
lights and cameras in the scene, besides a basic material
editor.

On the other hand, the tool had to be easily extensible
and customizable; that is, external third party applications
should be able to integrate in a transparent way, modifying
the tool interface in such a way the user can use such
utilities with the whole application.

2. Tool structure

To achieve such customization and extensibility goals it
was clear the necessity to provide a simple enough
structure so that the interface between the main tool and
third party applications was minimum and, at the same
time, flexible enough to be able to accept almost any kind
of possibility.

This could only be possible by using loadable dynamic
modules or plug-in’s; each module would consist on a
piece of code that could or not be loaded according to the
purpose the final user wanted for the application. This way,
in function of user’s necessities one set or another would be
used, constituting this sets plus the code that glue them
together a coherent and closed environment.

Therefore, the whole tool would consist on a collection
of modules dedicated to carry out different tasks
communicating through a common channel, this channel is
the application kernel. Therefore, the basic elements that
would constitute the visualization environment would be
the following ones:

• Loader: from the user’s point of view, it would be the
main program since it would be the only executable
code; however, it is one of the less important parts
since its only purpose is to load in memory the
modules that will constitute the final tool.

• Kernel: composed by the 2D sub-kernel and the 3D
sub-kernel; the first one would mainly provide
methods to obtain memory for multi-layer images, to
free this memory, to manage the status stack that
constitutes each image and, also, to show the images.
The 3D sub-kernel would offer mechanisms for

geometry, lights and cameras management, as well as
for the scenes rendering.

• Plug-in’s: modules that will extend the tool
functionality; although they would not be strictly
necessary for the operation of the tool, the lack of
some of them could cause an important limitation. Part
of the functionality attributed at the beginning to the
2D sub-kernel, like different file formats management,
would actually fall on extensions unknown by the
kernel; this way it is easy to improve the tool’s file
format recognition in the future.

Figure 1: Tool structure.

In figure 1 the tool structure is shown. As you can see,
the application interface allows to access part of the kernel
functionality (constituted by the 2D and 3D sub-kernels).
On the other hand, the extensions or plug-in’s are
composed from two different elements: the extension
compiled code that interact and lean on the application
kernel, and the GUI that interact with the application
interfaces besides the extension code. At last, kernel, GUI
and extensions lean on the loader.

4. Employed technologies

Previous exposition can be elegant but arises some
questions about the way to carry out it: does exist any
technology that...

• can be easily extended using an standard language?

• can allow the implementation of dynamic loadable
modules?

• can provide simple, quick tools to develop GUI easily
customizable by non-expert users?

• can be portable among different platforms?

Visualization Development Environments 2000 Proceedings

3

The answer is, luckily, “yes”: modern script languages
[Laird and Soraiz, 1999]. To explain in detail this
languages nature is not the goal of this paper, although it is
needed talk a little about some of their main characteristics,
characteristic that make them specially suitable for a
development as the one exposed.

Among the most attractive points in modern script
languages we can stand out:

• They are open-source.

• They are interpreted languages so the software
development process is speeded up.

• They are designed thinking of a wide portability
among platforms.

• They are extensible by using C or C++ code.

• There are available extensions for GUIs development.

By using such a language the tool could be focused in
the following way: the loader would be an interpreter for
one of these languages while the kernel and the extensions
would do it as dynamic modules written in C or C++; at
last, the tool user interface would be built by using a toolkit
for GUI development provide by the script language.

Among different available languages, Tcl and its
extension Tk [Harrison and McLennan, 1998; Welch,
1997] for GUI development were chosen; mainly because
of the language maturity and its well-known reliability on
complex software projects. Following section will explain
the way in which projects are developed with Tcl/Tk and
the importance this approach would have to reach the goals
outlined for this project.

4.1 Tcl/Tk

Tcl (Tool Command Language) comes from John
Ousterhout’s work in the University of California at
Berkeley; according to words Ousterhout:

The Tcl scripting language grew out of my work on
design tools for integrated circuits [...] in the early 1980’s.
My students and I had written several interactive tools for
IC design [...] Each tool needed to have a command
language [...] However, our primary interest was in the
tools, not their command languages. Thus we didn’t invest
much effort in the command languages and the languages
ended up being weak and quirky. Furthermore, the
language for one tool couldn’t be carried over to the next,
so each tool ended up with a different bad command
language. After a while this became rather embarrassing.

In the fall of 1987 [...] I got the idea of building an
embeddable command language. The idea was to spend
extra effort to create a good interpreted language, and

furthermore to build it as a library package that could be
reused in many different applications. The language
interpreter would provide a set of relatively generic
facilities, such as variables, control structures, and
procedures. Each application that used the language would
add its own features into the language as extensions, so
that the language could be used to control the application.
The name Tcl (Tool Command Language) derived from this
intended usage

The idea was really bright: new applications would not
be monolithic blocks of code but sets of a multipurpose
language commands that could carry out simple (like
generating a random number) or complex tasks (to obtain
the edges for an image); the compiled code for that
command set would be an extension that would be loaded
by the language interpreter when it was needed and it could
be repeatedly used in the future.

Mentioning again Ousterhout,

[...] Since most of the interesting functionality will come
from the application, the primary purpose of the language
is to integrate or "glue together" the extensions. Thus the
language must have good facilities for integration.

This way of using Tcl code to integrate applications is
fundamental; in fact, it is the main reason for the success in
the previously described structure development, the reader
will have already understood in which way the Tcl
interpreter is the base for the loader while the kernel and
plug-in’s are language extensions written in C/C++, glued
and configured by using Tcl code; this extensions are
immediately reusable thanks to its simple use as Tcl
commands.

Apart from these language characteristics it is necessary
to add the ones its extension Tk has; this is a toolkit for
GUIs development; Tk allows to obtain great complexity
interfaces in record time by using widgets. Tk, just as Tcl,
is extensible so new components can be implemented for
later use. One of them is Togl2, a widget that allows to
carry out OpenGL rendering; in an initial stage of project
development it was thought use this widget although, in the
end, it was discarded in favor of the Visualization Toolkit
(VTK).

Therefore, Tcl applications can be structured in two
ways: as a Tcl interpreter with some few specific
application commands, as shown in figure 2, or by adding
commands provided by Tk, besides by other extensions, as
in figure 3.

2 http://togl.sourceforge.net

VDE 2000, Princeton, New Jersey, April 27-28, 2000

4

Figure 2: Tcl application.

Figure 3: Tcl/Tk application.

The developed tool is a second type application: a
program based on wish3 loads and executes a number of
scripts that, in turn, proceed to load all the available
extensions as well as the Tk code Tk for the GUI and tool
customization; this code uses commands defined by the Tcl
library, by the tool kernel (that is, by the 2D sub-kernel or
the 3D sub-kernel) or by the different extensions,
commands whose code will have been written in C or in
C++.

Once the way to develop the tool by mixing Tcl/Tk code
(GUI development an integration) and C/C++ code (tool
functionality implementation) had been established the
project changed to a new phase to study the 3D sub-kernel4

implementation.

3 wish is a generic application that interprets Tcl/Tk
code, it constitutes the base for GUI applications
development; in fact, all the applications based on Tcl/Tk
use the wish code.

4 The 2D sub-kernel didn’t need such a phase since its
functionality is, in comparison with the 3D sub-kernel, reduced,

4.2 VTK (Visualization ToolKit)

In previous section a widget is mentioned which is able
to provide OpenGL rendering in Tcl/Tk, it is also affirmed
that such a component wasn’t used because the developers
preferred a visualization library. Which were the
differences between both approaches to discard one in
favor of another? The reasons were mainly the same ones
to carry out an implementation based on a combination of
script and traditional languages instead of coding fully in
C++: speed development and code reusability.

To develop the 3D sub-kernel with pure OpenGL would
imply the implementation of an whole class hierarchy for
geometry, lights, cameras, materials, interaction among
objects and so on. However, that work becomes
unnecessary if a framework that already provides this
classes is used; nowadays there are a big number of
visualization environments that carry out most of the
performance needed for a computer graphics project, they
are also able to be extended if needed by adding own
classes and methods.

The best known visualization tools are IDL, IRIS
Explorer, OpenDX and VTK5, among others. What
characteristics does VTK show to have been developed the
3D sub-kernel upon this library? We could stand out the
following ones:

• Library source code is provided for free.

• It is portable among different Unix flavours and
Windows.

• The user can extend it by adding his own classes.

• It provides wrapping programming interfaces for C++
(since it is written in this language), Java, Python...
and Tcl!

As for the other tools, OpenDX is the only one open-
source, IDL and IRIS Explorer require an user license; on
the other hand, VTK is the only one which is provide as a
“simple” linking library, the others are frameworks that
allow application development by using an own language
or in a visual way. Of course, only VTK provides a
wrapping layer for other languages, mainly, Tcl.

focusing in multi-status and multi-layer image management, as
well as visualization.

5 Interested reader can find more information about these utilities
in following links: http://www.rsinc.com/idl/index.cfm (IDL),
http://www.nag.com/Welcome_IEC.html (IRIS Explorer),
http://www.opendx.org (OpenDX) and
http://www.kitware.com/vtk.html (VTK).

Visualization Development Environments 2000 Proceedings

5

One of the VTK’s strongest points is that programming
interface between the library and interpreted languages as
Tcl [Schroeder and Martin, 1999]:

The Visualization Toolkit consists of two basic
components: a compiled C++ class library, and an
“interpreted” wrapper layer that lets you manipulate the
compile classes using the languages Java, Tcl, and Python.

The advantage of this architecture is that you can build
efficient (in both CPU and memory) algorithms in the
compiled language, C++, and retain the rapid code
development features of interpreted languages (avoidance
of compile/link cycle, simple but powerful tools, and access
to GUI tools).

This is certainly interesting since it follows a very
similar approach as Ousterhout’s: to provide very efficient
compiled code that is invoked by simple commands on a
very high level script language. In this sense VTK could
carry out the work required by the 3D sub-kernel, the
question was if the library could be really used in huge
graphic projects. The answer was highly positive, VTK
doesn’t only allow to develop fast but rather it provides
really advanced characteristics that make of it a solid base
for any kind of scientific visualization:

• The working way follow the classic rendering pipeline,
so any person who knows the basic 3D graphics
theoretical concepts can understand the way the library
classes are used and how to obtain results from just the
first moment.

• The objects provided by library kernel are easy to
understand6; this way, it provides vtkActor, vtkLight,
vtkCamera, vtkProperty, vtkTransform, vtkRenderer
and vtkRenderWindow among others. Without
knowing anything about VTK, the reader can already
imagine what they make and how they are linked
together to obtain the results (remember the pipeline).

• It provides high performance characteristics such as
level of detail actors, implicit modelling, hierarchical
assemblies, real-time interaction, stereography, etc.

• It is extensible so a big number of classes are
contributed by different people7, so the package is

6 This is absolutely true, what is also true is that to get high
proficiency in VTK some practice is required, although the
learning curve is not too pending.

7 Or companies, in fact General Electric has contributed code to
VTK, mainly medical data treatment algorithms; the only con is
that this code is patented and it is necessary a license to employ
it.

always on development, earning more and more
functionality.

• There are image, geometry and scene importers and/or
exporters available for the most extended formats.

6. The digital processing plug-in

Once the tool structure and employed technologies have
been introduced it’s easy to understand the way any kind of
external application can be integrated as a plug-in. The first
of such plug-in’s was a digital image processing library
(developed at the same time the described environment was
built).

This library should provide a series of image processing
methods, from noise reduction to segmentation; all this
functionality has to be based on a very simple image
structure (each “image” would consist in a state stack
where each state would be composed of a series of layers)
and a reduced number of methods for its handling (to
alloc/free memory, put/get data into this memory space).

An essential requirement for the library was its
independence, although its first mission would be to be
embodied as a plug-in for another tool this didn't should in
anyway condition its characteristics; the code that would
implement all the functionality shouldn’t know other tools
existence.

This way, the main part of the library was implemented
as an aseptic C++ class hierarchy, requiring two later steps
to “wrap” it in such a way that it was accepted by the main
tool structure and it was easy to use.

First of this steps was the generation of a full series of C
functions to invoke C++ library methods, this functions
would constitute the binary code for the commands in a Tcl
extension. Thank to this process, the digital image
processing library was already able to be loaded by the
tool.

Second step forced to write a GUI in Tk to allow the use
of the previous Tcl commands that invoke the C++ library
methods.

At this point we yet have a plug-in for digital image
processing; the described procedure, employee for the
library conversion into an external module can be equally
followed to obtain extensions from legacy code.

In figure 4 it is shown the final structure for the set of
tools: an opern-source visualization library like VTK
integrated inside an application kernel and a self-made
library that works as a plug-in that communicates with this
kernel.

VDE 2000, Princeton, New Jersey, April 27-28, 2000

6

Figure 4: Digital library an VTK integration.

5. Final results and conclusions

While writting this paper the described tool development
has already finished; the goals outlined for it have been
fully reached and we can say that this approach has not
only been a success but rather it is one of the few that can
guarantee same results in a reasonably short lapse of time.

As a sample of the finished project, in figures 5 and 6
some tool snapshots are shown. First one shows the tool’s
image treatment capacities thank to the digital image
processing plug-in. In figure 6 it is shown the 3D
environment, with a sample of basic primitives.

Figure 5: Tool snapshot showing 2D environment.

Figure 6: Tool snapshot showing 3D environment.

Just to finish, the described tool cannot be considered in
any way as a final milestone but as a first step for future
development. Perhaps such development will be based on
this tool or not, but what is a true fact is that the technology
which allow the building of multipurpose, high-
performance, easily customizable and extensible, graphic
tools is available, allowing such tools quick graphic
applications development that, as feed-back, will contribute
to the improvement of such utilities.

References

Laird , C.; Soraiz, K.; “Choosing a scripting language”.
http://www.sunworld.com/swol–10–1997/swol–10–
scripting.html, 1999.

Harrison , M.; McLennan, M.; “Effective Tcl/Tk
Programming.” Addison-Wesley, 1998.

Welch, B.B.; “Practical Programming in Tcl & Tk.”
Prentice Hall PTR, 1997.

Schroeder, W.J.; Martin, K.M.; “The vtk User’s Guide.”
Kitware, Inc., 1999.

